Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Alan J. Lough, ${ }^{\text {a* }}$ Karine Villeneuve ${ }^{\text {b }}$ and William Tam ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Correspondence e-mail:
alough@chem.utoronto.ca

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.040$
$w R$ factor $=0.099$
Data-to-parameter ratio $=8.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Ethyl 2-acetonyl-3-(1H-isochromen-1-yl)acrylate

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$, molecules related by the 2_{1} screw axis are linked by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming one-dimensional chains progagating along the c axis.

Comment

Recently, we have studied the ruthenium-catalysed [2 + 2]cycloaddition reactions between bicyclic alkenes and propargyl alcohols (Villeneuve et al., 2003). When 11oxatricyclo[6.2.1.0 ${ }^{2,7}$]undeca-2,4,6,9-tetraene, (I), was used as the bicyclic alkene component and ethyl 4-hydroxy-2pentynoate, (II), was used as the alkyne component, the ruthenium-catalysed formation of a cyclopropane product was seen to be occurring (Villeneuve \& Tam, 2006). However, when the solvent was changed from tetrahydrofuran to methanol, the title compound, (III), was formed instead.

A view of the molecular structure of (III) is shown in Fig. 1. The conformation of the six-membered pyran ring is intermediate between a half-chair and a sofa. Atoms C1/C2/C3/C8 form an approximate plane [maximum deviation = 0.0488 (15) \AA for C2], while C9 and O1 deviate from this plane by 0.434 (5) and -0.099 (5) \AA, respectively. In the crystal structure, the molecules of (III) form one-dimensional chains along the polar c-axis direction via weak intermolecular C $\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1 and Fig. 2)

Experimental

Abstract

11-Oxatricyclo[6.2.1.0 ${ }^{2,7}$]undeca-2,4,6,9-tetraene, (I) (204.9 mg , 1.421 mmol), and ethyl 4-hydroxy-2-pentynoate, (II) (180.0 mg , $1.266 \mathrm{mmol})$, were reacted in the presence of $\mathrm{Cp} * \mathrm{RuCl}(\mathrm{COD})(\mathrm{Cp} *=$ 1,2,3,4,5-pentamethylcylopentadiene and $\mathrm{COD}=1,5$-cyclooctadiene). The reaction mixture was stirred at 333 K for 1 h . The crude product was purified by column chromatography (gradient of ethyl acetate-hexanes $=1: 19$ to $1: 4$) to yield the isochromene (III) (yield: $181.2 \mathrm{mg}, 0.6330 \mathrm{mmol}, 50 \%$). Suitable crystals were grown from a solution of (III) in diethyl ether.

Received 25 May 2006
Accepted 25 May 2006

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$
$M_{r}=286.31$
Orthorhombic, Pna $_{1}$
$a=9.6237(7) \AA$
$b=18.8830(12) \AA$
$c=8.4729(4) \AA$
$V=1539.73(17) \AA^{3}$

Data collection

Bruker-Nonius KappaCCD

 diffractometerφ scans and ω scans with κ offsets Absorption correction: multi-scan (SORTAV; Blessing 1995)
$T_{\text {min }}=0.882, T_{\text {max }}=0.986$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.099$
$S=1.07$
1857 reflections
211 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.235 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=150(1) \mathrm{K} \\
& 2.6,27.5 \\
& 0.45 \times 0.22 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

7737 measured reflections
1857 independent reflections 1567 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.042$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0434 P)^{2} \\
&+0.2438 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXTL
Extinction coefficient: 0.070 (9)

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C9-H9A $\cdots \mathrm{O}^{\mathrm{i}}$	1.00	2.32	$3.275(3)$	160
C12-H12B O^{i}	0.99	2.57	$3.442(3)$	147

Symmetry code: (i) $-x+1,-y+1, z-\frac{1}{2}$.
In the absence of significant anomalous dispersion effects, Friedel pairs were merged. The two C atoms of the terminal ethyl group were modelled as disordered over two sites, the ratio of refined occupancies being 0.598 (10):0.402 (10) for C16/C17:C16A/C17A. The $\mathrm{C} 16-\mathrm{C} 17$ and $\mathrm{C} 16-\mathrm{O} 3$ bond lengths were restrained to be equal to the C16A-C17A and C16A-O3A bond lengths, repectively, with an effective standard deviation of $0.003 \AA$. H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}($ methyl C).

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge NSERC, the University of Toronto, for funding.

References

Altomare, A., Burla, M. C., Camalli, G., Cascarano, G., Giacovazzo, C., Gualiardi, A. \& Polidori, G. (1994). J. Appl. Cryst. 27, 435.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Figure 1
The molecular structure of (III), showing 30% probability displacement ellipsoids (arbitrary spheres for H atoms). The bonds of the minor disorder component are shown as dashed lines.

Figure 2
A partial packing plot of (III), showing hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted. Only one disorder component is shown.

Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2001). SHELXTL. Version 6.1 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Villeneuve, K., Jordan, R. W. \& Tam, W. (2003). Synlett, 14, 2123-2128.
Villeneuve, K. \& Tam, W. (2006). Organometallics, 25, 843-848.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

